投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

基于神经结构搜索的多种植物叶片病害识别

来源:植物研究 【在线投稿】 栏目:期刊导读 时间:2020-11-13
作者:网站采编
关键词:
摘要:为实现植物病害的自动准确识别,该研究提出一种基于神经结构搜索的植物叶片图像病害识别方法,该方法能够依据特定数据集自动学习到合适的深度神经网络结构。采用包含14种作物和

为实现植物病害的自动准确识别,该研究提出一种基于神经结构搜索的植物叶片图像病害识别方法,该方法能够依据特定数据集自动学习到合适的深度神经网络结构。采用包含14种作物和26种病害共54 306张的公开PlantVillage植物病害图像作为试验数据,按照4∶1的比例随机划分,分别用于神经结构搜索和测试搜索到的最优网络结构的性能。同时,为探究神经结构搜索对数据平衡问题是否敏感及图像在缺乏颜色信息时对神经结构搜索的影响,对训练数据进行过采样和亚采样平衡处理及灰度变换。试验结果显示,该研究方法在训练样本数据不平衡和平衡时均可以搜索出合适的网络结构,模型识别准确率分别为98.96%和99.01%;当采用未进行平衡处理的灰度图像作为训练数据时,模型识别准确率有所下降,为95.40%。该方法能够实现植物病害的准确识别,为科学制定病害防治策略提供有效的技术手段。

文章来源:《植物研究》 网址: http://www.zwyjzz.cn/qikandaodu/2020/1113/674.html



上一篇:贫困农村土壤—植物—儿童人体必需微量元素的
下一篇:绿萝

植物研究投稿 | 植物研究编辑部| 植物研究版面费 | 植物研究论文发表 | 植物研究最新目录
Copyright © 2018 《植物研究》杂志社 版权所有
投稿电话: 投稿邮箱: